22 Maret 2017

Pesona Cantik Galaksi di alam semsesta

Messier 78 (a reflection nebula in Orion)
This new image of the reflection nebula Messier 78 was captured using the Wide Field Imager camera on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This colour picture was created from many monochrome exposures taken through blue, yellow/green and red filters, supplemented by exposures through a filter that isolates light from glowing hydrogen gas. The total exposure times were 9, 9, 17.5 and 15.5 minutes per filter, respectively.

ESO’s VLT reveals the Carina Nebula's hidden secrets
This broad image of the Carina Nebula, a region of massive star formation in the southern skies, was taken in infrared light using the HAWK-I camera on ESO’s Very Large Telescope. Many previously hidden features, scattered across a spectacular celestial landscape of gas, dust and young stars, have emerged.

The Eagle Nebula
Three-colour composite mosaic image of the Eagle Nebula (Messier 16, or NGC 6611), based on images obtained with the Wide-Field Imager camera on the MPG/ESO 2.2-metre telescope at the La Silla Observatory. At the centre, the so-called “Pillars of Creation” can be seen. This wide-field image shows not only the central pillars, but also several others in the same star-forming region, as well as a huge number of stars in front of, in, or behind the Eagle Nebula. The cluster of bright stars to the upper right is NGC 6611, home to the massive and hot stars that illuminate the pillars. The “Spire” — another large pillar — is in the middle left of the image.
This image is a composite of 3 filters in the visible range: B (blue), V (green) and R (red).

The Eagle's EGGs
Messier 16 (M16), also known as the Eagle Nebula, is located in the southern constellation of Serpens (the Snake).
Using the infrared multi-mode ISAAC instrument on the 8.2-m VLT ANTU telescope, European astronomers were able to image the Eagle Nebula at near-infrared wavelength. The ISAAC near-infrared images cover a 9 x 9 arcminutes region, in three broad-band colours and with sufficient sensitivity to detect young stars of all masses and — most importantly — with an image sharpness as good as 0.35 arcseconds.
The wide-field view of M16 shows that there is much happening in the region. The first impression one gets is of an enormous number of stars. Those which are blue in the infrared image are either members of the young NGC 6611 cluster — whose massive stars are concentrated in the upper right (north west) part of the field — or foreground stars which happen to lie along the line of sight towards M16.
Most of the stars are fainter and more yellow. They are ordinary stars behind M16, along the line of sight through the galactic bulge, and are seen through the molecular clouds out of which NGC 6611 formed. Some very red stars are also seen: these are either very young and embedded in gas and dust clouds, or just brighter stars in the background shining through them.
This photo is the result of a three-colour composite mosaic image of the Eagle Nebula (Messier 16), based on 144 individual images obtained with the infrared multi-mode instrument ISAAC on the ESO Very Large Telescope (VLT) at the Paranal Observatory. At the centre, the so-called "Pillars of Creation" can be seen. This wide-field infrared image shows not only the central three pillars but also several others in the same star-forming region, as well as a huge number of stars in front of, in, or behind the Eagle Nebula. The cluster of bright blue stars to the upper right is NGC 6611, home to the massive and hot stars that illuminate the pillars.
Technical information: This image was made using the near-infrared camera ISAAC on the ESO 8.2-m VLT ANTU telescope on April 8 and May 8 - 10, 2001. The full field measures approximately 9.1 x 9.1 arcmin, covering roughly 17 x 17 light-years (5.3 x 5.3 pc) at the distance to the region (about 6,500 light-years or 2 kpc). This required a 16-position mosaic (4 x 4 grid) of ISAAC pointings : at each pointing, a series of images were taken in each of the near-infrared J s - (centred at 1.24 µm wavelength), H- (1.65µm), and K s - (2.16 µm) bands. North is up and East left.
The total integration time for each pixel in the mosaic was 1200, 300, and 300 seconds in the central 4.5 x 4.5 arcmin region, and 200, 50, and 50 seconds in the outer part, in J s -, H-, and K s - bands, respectively. The seeing FWHM (full width at half maximum) was excellent, at 0.38, 0.36, and 0.33 arcsec in J s, H, and K s, respectively. Point sources are detected in the central region at the 3-sigma level (brightest pixel above background noise) at 22.6, 21.3, and 20.4 magnitudes in J s, H, and K s, respectively. These limits imply that a 1 million year old, 0.075 solar-mass object on the star/brown dwarf boundary could be detected in M16 through roughly 15, 20, and 30 magnitudes of visual extinction at J s, H, and K s, respectively.
After removal of instrumental signatures and the bright infrared sky background, all frames in a given band were carefully aligned and adjusted to form a seamless mosaic. The three monochromatic mosaics were then scaled to the cube root of their intensities to reduce the enormous dynamic range and enhance faint nebular features. The mosaics were then combined to create the colour-coded image, with the J s -band being rendered as blue, the H-band as green, and the K s -band as red. A total of 144 individual 1024 x 1024 pixel ISAAC images were merged to form this mosaic.

The Crab Nebula in Taurus
This photo shows a three colour composite of the well-known Crab Nebula (also known as Messier 1), as observed with the FORS2 instrument in imaging mode in the morning of November 10, 1999. It is the remnant of a supernova explosion at a distance of about 6,000 light-years, observed almost 1,000 years ago, in the year 1054. It contains a neutron star near its center that spins 30 times per second around its axis (see below).
In this picture, the green light is predominantly produced by hydrogen emission from material ejected by the star that exploded. The blue light is predominantly emitted by very high-energy ("relativistic") electrons that spiral in a large-scale magnetic field (so-called synchrotron emission). It is believed that these electrons are continuously accelerated and ejected by the rapidly spinning neutron star at the centre of the nebula and which is the remnant core of the exploded star. This pulsar has been identified with the lower/right of the two close stars near the geometric center of the nebula, immediately left of the small arc-like feature, best seen in ESO Press Photo eso9948. Technical information: ESO Press Photo eso9948 is based on a composite of three images taken through three different optical filters: B (429 nm; FWHM 88 nm; 5 min; here rendered as blue), R (657 nm; FWHM 150 nm; 1 min; green) and S II (673 nm; FWHM 6 nm; 5 min; red) during periods of 0.65 arcsec (R, S II) and 0.80 (B) seeing, respectively. The field shown measures 6.8 x 6.8 arcminutes and the images were recorded in frames of 2048 x 2048 pixels, each measuring 0.2 arcseconds. North is up; East is left.
Sumber : ESO


15 Maret 2017

Unduh : Multimedia Fisika

Multimedia fisika merupakan media TIK fisika dalam pembahasan fisika dalam pokok materi pokok seperti flashusaha dan energi, flash teori kinetik gas, flash termodinamika, flash hukum Newton dan masih banyak lagi, dengan tujuan untuk memudahkan pemahaman materi secara keseluruhan. Dibuat dengan peristiwa yang sebenarnya seperti peristiwa sehari-hari. Berikut model-model flash media tersebut, berikut preview pada :
Efek Doppler

  • Alat Ukur Listrik <> Arus dan Tegangan AC
  • Dinamika Gerak <> Energi Mekanik
  • Gerak Lurus Berubah Beraturan(GLBB)
  • Gerak Melingkar <> Jangka Sorong
  • Kapasitor <> Kesetimbangan Benda Tegar
  • Listrik Statis <> Listrik Statis
  • Model Atom Bohr <> Momentum Linier
  • Momentum Sudut <> Pemuaian
  • Perambatan Kalor <> Radiasi Benda Hitam
  • Radio Aktif <> Reaksi Inti
  • Teori Kinetik Gas <> Teropong
  • Titik Berat <> Transistor <> Tumbukan
  • 14 Maret 2017

    Unduh : Media Flash Optik

    Dalam Kegiatan belajar mengajar dibutuhkan berbagai macam perangkat untuk mencapai tujuan pembelajaran, baik buku penunjang pembelajaran, media pembelajaran juga perangkat lain yang langsung dikerjakan oleh bapak/ibu guru, atau evaluasi penilaian hasil kerja siswa. Dalam proses pembelajaran, dibutuhkan pembuktian fakta sehingga media yang sangat besar dapat diganti dengan media yang sesuai termasuk media flash. Dibawah ini adalah media Flash Optika Geometrik, semoga bermanfaat dan mudah cara penggunaannnya :
     Hyperopia
  • Model 1 <> Model 2 <> Model 3 <> Model 4
  • Myopia
  • Model 1 <> Model 2 <> Model 3 <> Model 4
  • Mikroskop
  • Model 1 <> Model 2 <> Model 3
  • Kamera
  • Model 1 <> Model 2 <> Model 3 
  • Model 4 <> Model 5
  • Anatomi mata <> Cacat mata <> Kondisi Mata
  • Mata usia <> Lensa mata <> Mata normal
  • Mata akomodasi <> Mata punctum proksimum
  • Astiguimaus <> Presbyopia <> Titik dekat mata
  • Hukum snellius
  • Model 1 <> Model 2 
  • Pemantulan dan pembiasan
  • Model 1 <> Model 2 <> Model 3 <> Model 4
  • Model 5 <> Model 6 <> Model 6 <> Model 7
  • Model 8
  • Prisma
  • Model 1 <> Model 2 <> Model 3
  • Lensa Cembung dan Cekung
  • Model 1 <> Model 2 <> Model 3 
  • Model 4 <> Model 5 <> Model 6
  • Model 6 <> Model 7 <> Model 8
  • Cermin Cekung dan Cembung
  • Model 1 <> Model 2 <> Model 3
  • Model 4 <> Model 5
  • Cermin Datar
  • Model 1 <> Model 2 <> Model 3
  • Model 4 <> Model 5
  • Percobaan cermin dan lensa <> Sudut kritis
  • Fokus lensa bekonfak <> Fokus lensa bikonvek
  • Percobaan lensa <> Simulasi lensa
  • Unduh : Media Flash Listrik AC dan DC

    Dalam Kegiatan belajar mengajar dibutuhkan berbagai macam perangkat untuk mencapai tujuan pembelajaran, baik buku penunjang pembelajaran, media pembelajaran juga perangkat lain yang langsung dikerjakan oleh bapak/ibu guru, atau evaluasi penilaian hasil kerja siswa. Dalam proses pembelajaran, dibutuhkan pembuktian fakta sehingga media yang sangat besar dapat diganti dengan media yang sesuai termasuk media flash. Dibawah ini adalah media Flash Listrik Arus Bolak Balik (AC), semoga bermanfaat dan mudah cara penggunaannnya : 
    Listrik arus bolak balik (AC)

  • Arus Dan Tegangan Sefase (R)
  • Grafik Gaya Gerak Listrik(Ggl)Terhadap Waktu
  • Grafik V Dan I Pada Induktor <> Grafik V Dan I Pada Kapasitor
  • Grafik V Dan I Pada Rangkaian Rc 
  • Grafik V Dan I Pada Rangkaian Rl
  • Rangkaian Hambatan AC <> Rangkaian Hambatan Dan Induktor
  • Rangkaian Hambatan Dan Kapasitor <> Rangkaian Induktor 
  • Rangkaian Kapasitor <> Simulasi Diagram Fasor
  • Simulasi Osiloskop <> Skala Osiloskop
  • Listrik arus searah(DC)
  • Arah Arus Listrik <> Arus Listrik Dc <> Arus Pada Baterai
  • Battery Player <> Energi Dan Daya Listrik <> Gambar Arus Analogi
  • Grafik Tegangan Dan Arus <> Hambatan Pararel
  • Hambatan Seri Dan Parelel <> Hambatan Seri <> Hukum I Kirchoff
  • Hukum I Kirchoff <> Insulator Charge <> Jembatan Weatstone
  • Jembatan Weatstone <> Jembatan Weatstone
  • Jembatan Weatstone <> Jembatan Weatstone
  • Kuat Arus Rangkaian Paralel <> Kuat Arus Rangkaian Seri
  • Parallel Waterflow <> Rangkaian Loop <> Rangkaian Paralel
  • Rangkaian Seri Dan Paralel Resistor <> Rangkaian Seri Dan Paralel
  • Rangkaian Seri <> Resistor Seri Dan Paralel <> Saklar
  • Sel Solar <> Seri Waterflow <> Simulasi Jembatan-Weatstone
  • Simulasi Rangkaian Parallel <> Simulasi Rangkaian Parallel
  • Simulasi Rangkaian Parallel <> Simulasi Rangkaian Seri
  • Simulasi Rangkaian Seri <> Tegangan Paralel <> Tegangan Seri
  • Unduh : Flash Gelombang

    Gelombang adalah energi yang merambat pada suatu medium baik pada zat cair, zat padat dan gas. Untuk memudahkan kita dalam menerima suatu konsep dibutuhkan media salah satunya media TIK yaitu flash sebagai media objek bergerak dengan tujuan objek-objek besar dapat dilakukan dikelas dengan media tersebut, berikut media yang berkaitan dengan gelombang.
    Gelombang Dua Simpul


  • Arah gelombang <> Dentuman
  • Efek Doppler
  • model 1 <> model 2 <> model 3 <> model 4
  • model 5 <> model 6 <> model 7
  • Gelombang dua simpul
  • model 1 <> model 2 <> Gelombang elektromagnetik
  • Gelombang Longitudinal
  • model 1 <> model 2 <> model 3 <> model 4
  • Gelombang Stasioner
  • model 1 <> model 2 <> model 3 <> model 4
  • model 5 <> model 6 <> model 7
  • Gelombang tranversal
  • model 1 <> model 2 <> model 3 <> model 4
  • model 5 <> model 6 <> model 7 <> model 8
  • Gerak Gelombang
  • model 1 <> model 2 <> model 3
  • model 4 <> Model 5
  • Interferensi gelombang
  • model 1 <> model 2 <> model 3 <> model 4
  • model 5 <> model 6 <> model 7
  • Karakteristik gelombang <> Kecepatan gelombang bunyi
  • Panjang gelombang
  • model 1 <> model 2 <> model 3
  • Persamaan gelombang berjalan
  • Rambatan gelombang dua medium
  • Simulasi gel transversal dan longitudinal
  • Spektrum gel. elektromagnetik
  • Unduh : Flash Induksi Magnet

    Medan Magnet adalah daerah disekitar benda-benda yang masih dipengaruhi oleh magnet. Medan magnet merupakan interaksi dua buah benda yang memiliki sifat magnetik, untuk memahami materi medan magnet kita dapat membaca buku atau dengan menggunakan media bergerak seperti flash(swf) atau menggunakan media flash movie, berikut adalah model-model yang kami tampilkan dan sekaligus dapat didownload, semoga bermanfaat.
    Gaya Lorentz Pada Dua Kawat Lurus Berarus

  • infocus > Gaya Lorentz Pada Dua Kawat Lurus Berarus
  • infocus > Pengertian Magnet
  • infocus > arah B dan I pada bidang kertas
  • infocus > arah B dan I pada bidang koordinat
  • infocus > arah B terhadap bidang pengamat
  • infocus > arah kompas pada magnet batang
  • infocus > arah kompas pada magnet U
  • infocus > arah kompas pada medan magnet
  • infocus > arah medan magnet bumi
  • infocus > arah vektor FBI
  • infocus > aturan tangan kanan untuk arah B dan I
  • infocus > aturan tangan kanan
  • infocus > garis-garis gaya magnet U
  • infocus > garis gaya pada magnet batang
  • infocus > gaya lorentz
  • infocus > gaya lorentz
  • infocus > gaya lorentz pada kawat lurus berarus
  • infocus > gaya lorentz pada muatan
  • infocus > gaya lorentz untuk proton dan elektron
  • infocus > Hukum Oersted
  • infocus > induksi magnet dari titik pengamat
  • infocus > induksi magnet pada kawat lurus
  • infocus > medan magnet pada kumparan
  • infocus > medan magnet pada toroida
  • infocus > medan magnet pada kawat lurus
  • infocus > medan magnet pada kawat lurus
  • infocus > simulasi kawat lurus berarus dengan kompas
  • infocus > simulasi penentuan resultan induksi magnet
  • 11 Maret 2017

    Bintang dan Bintang

    the young star V883 Orionis

    The brilliant star VFTS 682 in the Large Magellanic Cloud
    This view shows part of the very active star-forming region around the Tarantula Nebula in the Large Magellanic Cloud, a small neighbour of the Milky Way. At the exact centre lies the brilliant but isolated star VFTS 682 and to its lower right the very rich star cluster R 136. The origins of VFTS 682 are unclear — was it ejected from R 136 or did it form on its own? The star appears yellow-red in this view, which includes both visible-light and infrared images from the Wide Field Imager at the 2.2-metre MPG/ESO telescope at La Silla and the 4.1-metre infrared VISTA telescope at Paranal, because of the effects of dust.

    Artist’s impression of dust formation around a supernova explosion
    This artist’s impression shows dust forming in the environment around a supernova explosion. VLT observations have shown that these cosmic dust factories make their grains in a two-stage process, starting soon after the explosion, but continuing long afterwards.

    Outbursts from a newborn star
    A pair of jets protrude outwards in near-perfect symmetry in this image of Herbig-Haro object (HH) 212, taken by ESO’s already decommissioned Infrared Spectrometer And Array Camera (ISAAC).
    The object lies in the constellation of Orion (The Hunter) in a dense molecular star-forming region, not far from the famous Horsehead Nebula. In regions like this, clouds of dust and gas collapse under the force of gravity, spinning faster and faster and becoming hotter and hotter until a young star ignites at the cloud’s centre. Any leftover material swirling around the newborn protostar comes together to form an accretion disc that will, under the right circumstances, eventually evolve to form the base material for the creation of planets, asteroids and comets.
    Although this process is still not fully understood, it is common that a protostar and its accretion disc, as seen here edge-on, are the cause of the jets in this image. The star at the centre of HH 212 is indeed a very young star, at only a few thousand years old. Its jets are remarkably symmetric, with several knots appearing at relatively stable intervals. This stability suggests that the jet pulses vary quite regularly, and over a short timescale — maybe even as short as 30 years! Further out from the centre, large bow shocks spread out into interstellar space, caused by ejected gas colliding with dust and gas at speeds of several hundred kilometres per second.

    A cosmic flame
    Sparkling at the edge of a giant cloud of gas and dust, the Flame Nebula, also referred to as NGC 2024, is in fact the hideout of a cluster of young, blue, massive stars, whose light sets the gas ablaze. Located 1,300 light-years away towards the constellation of Orion, the nebula owes its typical colour to the glow of hydrogen atoms, heated by the stars. The latter are obscured by a dark, forked dusty structure in the centre of the image and are only revealed by infrared observations.
    This image is based on data acquired with the 1.5-metre Danish telescope at ESO’s La Silla Observatory in Chile, combining three exposures in the filters B (40 seconds), V (80 seconds) and R (40 seconds).

    Infrared view of the Rho Ophiuchi star-forming region
    This image shows the Rho Ophiuchi star-forming region in infrared light, as seen by NASA’s Wide-field Infrared Explorer (WISE). Blue and cyan represent light emitted at wavelengths of 3.4 and 4.6 micrometres, which is predominantly from stars. Green and red represent light from 12 and 22 micrometres, respectively, which is mostly emitted by dust.

    Sumber : ESO

    Nabulae

    The Horsehead Nebula
    A reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. It was produced from three images, obtained on February 1, 2000, with the FORS2 multi-mode instrument at the 8.2-m KUEYEN Unit Telescope and extracted from the VLT Science Archive Facility . The frames were obtained in the B-band (600 sec exposure; wavelength 429 nm; FWHM 88 nm; here rendered as blue), V-band (300 sec; 554 nm; 112 nm; green) and R-band (120 sec; 655 nm; 165 nm; red). The original pixel size is 0.2 arcsec. The photo shows the full field recorded in all three colours, approximately 6.5 x 6.7 arcmin 2 . The seeing was about 0.75 arcsec.
    This image is available as a mounted image in the ESOshop.

    The Helix Nebula
    This colour-composite image of the Helix Nebula (NGC 7293) was created from images obtained using the Wide Field Imager (WFI), an astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope at the La Silla observatory in Chile. The blue-green glow in the centre of the Helix comes from oxygen atoms shining under effects of the intense ultraviolet radiation of the 120 000 degree Celsius central star and the hot gas. Further out from the star and beyond the ring of knots, the red colour from hydrogen and nitrogen is more prominent. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas.

    This image was created from images through blue, green and red filters and the total exposure times were 12 minutes, 9 minutes and 7 minutes respectively.
    This image is available as a mounted image in the ESOshop.
    The Orion Nebula
    This spectacular image of the Orion Nebula star-formation region was obtained from multiple exposures using the HAWK-I infrared camera on ESO’s Very Large Telescope in Chile. This is the deepest view ever of this region and reveals more very faint planetary-mass objects than expected.

    The Carina Nebula
    This broad image of the Carina Nebula, a region of massive star formation in the southern skies, was taken in infrared light using the HAWK-I camera on ESO’s Very Large Telescope. Many previously hidden features, scattered across a spectacular celestial landscape of gas, dust and young stars, have emerged.

    The star-forming region Messier 17
    The first released VST image shows the spectacular star-forming region Messier 17, also known as the Omega Nebula or the Swan Nebula, as it has never been seen before. This vast region of gas, dust and hot young stars lies in the heart of the Milky Way in the constellation of Sagittarius (The Archer). The VST field of view is so large that the entire nebula, including its fainter outer parts, is captured — and retains its superb sharpness across the entire image. The data were processed using the Astro-WISE software system developed by E.A. Valentijn and collaborators at Groningen and elsewhere.

    Stellar nursery NGC 3603
    NGC 3603 is a starburst region : a cosmic factory where stars form frantically from the nebula’s extended clouds of gas and dust. Located 22,000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying the intense star formation processes, very common in other galaxies, but hard to observe in detail because of their large distance.
    The newly released image, obtained with the FORS instrument attached to one of the four 8.2-metre VLT Unit Telescopes at Cerro Paranal, Chile, is a three-colour combination of exposures acquired through visible and near-infrared (V, R, I) filters. This image portrays a wider field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. The field of view is 7 arcminutes wide.
    Star cluster NGC 6193 and nebula NGC 6188
    This image, taken by OmegaCAM on the VLT Survey Telescope at Paranal Observatory, shows a section of the Ara OB1 stellar association. In the centre of the image is the young open cluster NGC 6193, and to the right is the emission nebula NGC 6188, illuminated by the ionising radiation emitted by the brightest nearby stars.

    Sumber : ESO

     
    Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | OSN Fisika, FB Media Belajar