11 Maret 2017

Galaksi Nukleus

The Inner Part of an Active Galactic Nucleus
Artist's impression of an active galaxy that has jets. The central engine is thought to be a supermassive black hole surrounded by an accretion disc and enshrouded in a dusty doughnut-shaped torus. The torus of dust and gas can be seen orbiting a flatter disc of swirling gas. In the centre, the supermassive black hole is surrounded by a flat accretion disc of rapidly orbiting material. The jets are emitted at right angles from the plane of the disc. Courtesy Aurore Simonnet, Sonoma State University.

Radio Galaxy Centaurus A
The new FORS2 image of Centaurus A, also known as NGC 5128, is an example of how frontier science can be combined with esthetic aspects. This galaxy is a most interesting object for the present attempts to understand active galaxies. It is being investigated by means of observations in all spectral regions, from radio via infrared and optical wavelengths to X- and gamma-rays. It is one of the most extensively studied objects in the southern sky. FORS2, with its large field-of-view and excellent optical resolution, makes it possible to study the global context of the active region in Centaurus A in great detail. Note for instance the great number of massive and luminous blue stars that are well resolved individually, in the upper right and lower left in ESO Press Photo eso0005b. Centaurus A is one of the foremost examples of a radio-loud active galactic nucleus (AGN). On images obtained at optical wavelengths, thick dust layers almost completely obscure the galaxy's centre. This structure was first reported by Sir John Herschel in 1847. Until 1949, NGC 5128 was thought to be a strange object in the Milky Way, but it was then identified as a powerful radio galaxy and designated Centaurus A. The distance is about 10-13 million light-years (3-4 Mpc) and the apparent visual magnitude is about 8, or 5 times too faint to be seen with the unaided eye.There is strong evidence that Centaurus A is a merger of an elliptical with a spiral galaxy, since elliptical galaxies would not have had enough dust and gas to form the young, blue stars seen along the edges of the dust lane. The core of Centaurus A is the smallest known extragalactic radio source, only 10 light-days across. A jet of high-energy particles from this centre is observed in radio and X-ray images. The core probably contains a supermassive black hole with a mass of about 100 million solar masses.
This image is a composite of three exposures in B (300 sec exposure, image quality 0.60 arcsec; here rendered in blue colour), V (240 sec, 0.60 arcsec; green) and R (240 sec, 0.55 arcsec; red). The full-resolution version of this photo retains the original pixels.

The Centre of the Active Galaxy NGC 1097
Colour-composite image of the central 5,500 light-years wide region of the spiral galaxy NGC 1097, obtained with the NACO adaptive optics on the VLT. More than 300 star forming regions - white spots in the image - are distributed along a ring of dust and gas in the image. At the centre of the ring there is a bright central source where the active galactic nucleus and its super-massive black hole are located. The image was constructed by stacking J- (blue), H- (green), and Ks-band (red) images. North is up and East is to the left. The field of view is 24 x 29 arcsec2, i.e. less than 0.03% the size of the full moon!

A Galactic Embrace
Two galaxies, about 50 million light-years away, are locked in a galactic embrace — literally. The Seyfert galaxy NGC 1097, in the constellation of Fornax (The Furnace), is seen in this image taken with the VIMOS instrument on ESO’s Very Large Telescope (VLT). A comparatively tiny elliptical companion galaxy, NGC 1097A, is also visible in the top left. There is evidence that NGC 1097 and NGC 1097A have been interacting in the recent past.
Although NGC 1097 seems to be wrapping its companion in its spiral arms, this is no gentle motherly giant. The larger galaxy also has four faint jets — too extended and faint to be seen in this image — that emerge from its centre, forming an X-shaped pattern, and which are the longest visible-wavelength jets of any known galaxy. The jets are thought to be the remnants of a dwarf galaxy that was disrupted and cannibalised by the much larger NGC 1097 up to a few billion years ago.
These unusual jets are not the galaxy’s only intriguing feature. As previously mentioned, NGC 1097 is a Seyfert galaxy, meaning that it contains a supermassive black hole in its centre. However, the core of NGC 1097 is relatively faint, suggesting that the central black hole is not currently swallowing large quantities of gas and stars. Instead, the most striking feature of the galaxy’s centre is the ring of bright knots surrounding the nucleus. These knots are thought to be large bubbles of glowing hydrogen gas about 750–2500 light-years across, ionised by the intense ultraviolet light of young stars, and they indicate that the ring is a site of vigorous star formation
With this distinctive central star-forming ring, and the addition of numerous bluish clusters of hot, young stars dotted through its spiral arms, NGC 1097 makes a stunning visual object.
The data were originally taken in 2004 (see eso0438) with the VIMOS instrument on the VLT, and additional colour information from an image taken by amateur astronomer Robert Gendler has been superimposed. The VLT data were taken through three visible-light filters: R (at a wavelength of 652 nanometres, and shown here in red), V (a wavelength of 540 nanometres, shown in green), and B (456 nanometres, shown in blue). The image covers a region of approximately 7.7 x 6.6 arcminutes on the sky.

The Hidden Engine of NGC 4945
Portrayed in this image is the spiral galaxy NGC 4945, a close neighbour of the Milky Way. Belonging to the Centaurus A group of galaxies, it is located at a distance of almost 13 million light-years. Showing a remarkable resemblance to our own galaxy, NGC 4945 also hides a supermassive black hole behind the thick, ring-shaped structure of dust visible in the picture. But, unlike the black hole at the centre of our Milky Way, the million-solar-mass black hole inside NGC 4945 is an Active Galactic Nucleus that is frantically consuming any surrounding matter, and so releasing tremendous amounts of energy.
This image combines observations performed through three different filters (B, V, R) with the 1.5-metre Danish telescope at the ESO La Silla Observatory in Chile.
Sumber : ESO

0 komentar:

Posting Komentar

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | OSN Fisika, FB Media Belajar